THSLSVS

CAT: 82-1

EDAS - Version IV

EDAS is a powerful disk-based combined editor and assembler supported
under Model | and Model [I[TRS-8@3s running wunder L0OOS. A Model [I TRSDOS
version will be available in fall 1982. Among its features are direct
assembly from one or more source disk files or memory buffer, conditional
assembly, macro assembly, extensive cross reference listings, and a
comprehensive line editor that supports upper and lower case text entry.

EDAS ASSEMBLER FEATURES

EDAS assembles absolute core-image object code to disk as a directly
executable load module (CMD). Source code can exist 1n memory as well as
included disk files when using the *GET assembler directive. *GET files can
be nested to five levels. EDAS usas default file extensions of "ASM" for
source and "CMD" for object code files to guard aginst inadvertant over-write
of a source file with object code. EDAS also respects HIGHS.

A powerful “*SEARCH filespec" assembler directive will invoke automatic
search of the Partitioned Data Set (PDS) "filespec" containing a library of
source code. The PDS directory will automatically GET any PDS member that
would resolve an undefined label reference. This process can be correlated to
a relocating assembler's resolving references at link time. [n EDAS, the
source library is ISAM accessed for minimal /0 overhead. PDS is required to
construct your own subroutine libraries.

Conditional assembly is supported with five pseudo-ops; IF expression;
IFLT expressionl, expressionZ; [FEQ expressionl, expression?; [FGT
expressionl, expression2; [IFDEF Tlabel; IFNDEF label; and [FREF label
Conditional assembly also supports the “1Fx ELSE ENDIF™ construct.
Conditional expressions can be nested to 16 levels.

The expression evaluator supports left-to-right evaluation of the

following operators: "+" addition; "-" subtraction; "“*" l6-bit by 8-bit
integer multiplication; “/" 16-bit by 8-bit integer division; ".MOD" modulo
division; "<" shift; "&" or ".AND." logical AND; "!" or ".OR." logical OR;
".XOR." logical exclusive OR; ".NOT." unary one's complement; ".NE." logical

not equal; and ".EQ." logical equal.

Pseudo-ops DEFB and DEFM are synonymys. EDAS also accepts DS, Dw, DB,
and DM as well as DEFS, DEFW, DEFB, and DEFM. EDAS provides for binary,
octal, decimal, hexadecimal, and string constants. Constant declarations can
be concatenated on one line, by separating terms with commas. This permits
complex expressions such as:

D8 1,2,'Buckle your sho','e'.0R.8QH,'] can''t'

Labels may be up to 15 characters long. Labels must start with A-Z, "@",
or "$". Positions 2-15 may also use "?" and "_". The "*MOD" assembler
directive is available to provide a unique character string substitution for
the "?" character appearing in labels of all files accessed via *GET. The
string value will increment each time *MOD is commanded. This will provide
“Jocal label" support for routines read off of disk.

A logical origin pseudo-op, LORG, will assemble 1load module files with
the load addresses offset to the LORG address while execution addresses are
based on the ORG address. When using EDAS to assemble applications that block
move sections of code, the LORG can be used to assemble the entire job at
once.

The EDAS assembler provides many switch options. These invoke: “-IM"
assemble output to memory; "-LP" 1list to printer; "-NC" suppress false
conditional blocks from 1listings; "-NE" suppress constant expansions on
listing; "“-NM" suppress Tlisting of macro expansions; "-WE"' wait on error;
“-WO" assemble with object code; "-WS" generate a sorted symbol table
listing; "-XR" generate a cross reference data file for downstream processing
by XREF.

Single level MACROs are supported with both positional parameters and
parameters by keyword. Values can be applied to any parameter at MACRO
definition time to allow for expansion time defaults if a parameter is
omitted at the time a MACRO is referenced. MACROs can be defined in memory or
source files but must be defined prior to being referenced. Local labels are
supported with the provision of a string substitution for the "?" character
in labels. The string will provide a unique value for each MACRO expansion.
The MACRO "?" substitution takes precedence over any *MOD substitution.

Additional pseudo-ops are provided for enhanced operation: "COM' will
allow a comment line to be written to the load module. These comment records
will not be loaded when executing the module, but will merely provide an easy
way to store such things as copyright messages in your object deck files;
"TITLE" will paginate your listing with a title string including the current
date and time, and an incrementing page number; "SUBTTL" lists the sub-title
string after each title; "PAGE" ejects a listing to a new page; "SPACE"
generates additional line feeds during listings for highlighting modules.

A sorted symbol table 1listing is available during the assembly. A
complete CROSS REFERENCE listing 1is available by a downstream processing
utility, XREF. Once an XR data file is generated, XREF will produce a listing
identifying all defined labels, the line number containing the definition,
its value, and the file name of the source file containing the definition
($CORE is wused to designate labels defined in memory). For each defined
label, all references to the label are listed by line number and source file
containing the reference. XREF lists statistics on the quantity of defined
labels and references. XREF can also be used to generate a file containing
EQUates (or DEFLs) for all symbols or a subset of symbols (those including a
special character). The EQU file 1is wuseful for interfacing separately
executable modules to a resident module {such as in overlay applications}.

EDAS EDITOR FEATURES

The EDAS editor operates on text in memory and uses & command syntax
identical to BASIC for intra-line editing. Lines hacked to null length will
be automatically deleted.

EDAS will “Load" and "Write" text buffers from/to disk with text file
concatenation in memory. The standard source file will be un-headered and
un-numbered which saves approximately 20% of disk file storage requirements.
However, EDAS will AUTOMATICALLY recognize and properly read a file that is
headered and/or numbered whether through “Load" or “"*GET" input. Two switches
are provided in the "Write" command to generate a header or line numbers when
saving a text buffer to disk.

You can input text in upper or lower case. In the case-converted mode,
all assembler source input is properly converted to upper case,
AUTOMATICALLY. In the case consistant mode, text remains as 1t was input
Thus, the editor can be used for assembler source, or Ssource for other
Yanguages such as PASCAL and C.

The editor supports relocating a block of lines with the "M>ove
start,end,to" command. Global changes to character strings can be made
throughout the text buffer or to only a designated range of lines with the
“<{C>hange /stringl/string2/start,end” command. Want to copy a block of lines?
The "<C>opy start,end,to" commgnd will duplicate the block numbered from
“Start-end" to follow the line numbered "to".

A M“<F>ind string” command will search the text buffer starting from
current line+l for the next occurrance of "string". String may be up to
15-characters in length. [f ‘“ctring" 1s null, the next occurrance of the
previous "find string" will be searched for.

Single line scrolling is supported with tne <UP-ARROW> and <DOWN-ARROW>
keys. The <SHIFT-CLEAR> key invokes a “"warm-boot" which aborts the current
operation, clears the screen, and re-initializes line numbering while
maintaining the current text buffer,

A "<U>sage command displays buffer status (in use and remaining), and
the first available in-memory address. The latter is useful for assembling
into memory then executing a "ranch" to the in-memory object program for
debugging purposes.

EDAS provides MiniDOS-type directory "<Query" and file "<K>ill"
functions. A "<V>iew" command will list a source file to the screen without
affecting the buffer contents.

When all things are considered, if you are writing system software,
support software, applications - big or small, EDAS will provide the power to
make your assembly Jjob easier, faster, and more worthwhile. [t does
everything but teach you how to program. EDAS comes complete in a three-ring
binder with extensive documentation of over 1@@ pages of useful information
(not OP-code explanations). A Z-80 quick reference card is included. EDAS,
for LDOS equipped Model Is and Ills (and Model IIs)

LDOS

LOOS is a new generation of operating system for the TRS-8p. It 1is a
totally device independent system, capable of device 1linking, routing,
setting, and filtering. LDOS will support up to eight logical drives,
including 5" (up to 88 tracks) and 8" floppies, single/double density,
single/double sided, and all available step rates are supported. Hard disks
are supported, up to 13 megabytes as a single drive. Hard drives may be
partitioned to represent up to eight logical drives, depending on the number
of heads on the drive. {Note: specific hardware may be required}

Model I/I1f LDOS disks can be either single or double density, and can
be read or written on either machine. Mode! I LDOS supports double density
with the Lobo LX-8p interface, or the Radio Shack, Percom, or Aerocomp double
density adaptors.

LDOS 1is completely documented in an extensive operating manual in excess
of 309 pages, containing both user instructions and a large section with
technical information. Numerous examples are given to detail all operating
functions.

To facilitate handling large numbers of files, all files created under
LDOS carry their date of creation or last modification, and are marked with a
"MOD" flag, if modified since their last backup. Many LDOS commands and
utilities can manipulate files by user specified file extension, full or
-partial file name (including the use of wildcard characters), by MOD flag, or
by date or range of dates.

LDOS <comes with an extensive Job Control Language (JCL). This 1is a
compiled language that allows the user to input commands and Job Control
conditionals and execution statements into a file which will control the
computer's Jjob stream. Execution can be tied to the setting of the
real-time-clock, and can provide both visual and audible alerts. Variables
and labels may be assigned by the user at run time to select the actual Job
Control execution and starting position in the JCL file.

LDOS comes complete with an RS-232 driver program, a terminal
communications wutility which includes automatic file transfer, a comlete
ASCII keyboard driver with 128-character type-ahead, a KeyStroke Multiply
filter for key re-definition, full printer spooling to memory and/or disk, a
printer output formatting filter, a disk-modifying extended DEBUG utility, a
file PATCH utility, a feature to reside /SYS files in memory for super fast
operation, and much, much more.

LDOS includes a Minidos keyboard filter that provides constant access to
certain system functions such as directory, free space, kill, debug,
character printing and top-of-form.

A Job Log driver can be used to send a list of all commands and system
error messages along with a time stamp to a specified file or device. This is
generally found only in main-frame systems.

LDOS includes an enhanced disk BASIC with high-speed load and save, run
multiple programs with common variables, blocked files of 1-256 LRL, execute
LDOS commands from BASIC, string array sort, RESTORE nnnnn, line re-numbering
and cross-reference listings, additional file modes for opening "old" or
"new" files, and more.

An extensive set of LIBRARY commands are stored and rapidly invoked from
an ISAM accessed partitioned data set. These include APPEND {concatenate two
files or device to file}, ATTRIB {set or alter file or disk pack attributes},
BUILD {create ASCII or packed hex files), COPY ({transfer an 1image of a
file/device to another file/device}, CREATE {pre-allocate file space that
will NOT shrink}, DEVICE (display status of all enabled disk drives, devices,
and user options), DIR {obtain SORTED disk drive directory data including
attributes, file space, date, LRL, extents,...}, DO {compile and/or execute a
predefined series of commands and keystrokes stored in a JCL file), DUM
{save a core-image in ASCII or CMD format}, FILTER {invoke a device ‘transfer
function}, FREE {obtain a free-space map or line listing for all disk packs},
LINK {couple two devices together}, LIST {obtain a file 1listing in ASCII or
hex format}, MEMORY (display and/or set HIGH$, directly alter/clear memory,
jump to an address}, PURGE {selectively delete files by screen prompting},
RESET {return a device or configuration to power up status}, ROUTE {redirect
the 1/0 path of a device to another device or file}, SET {establish a new
device}, SPOOL ({invoke the system's printer spooler}, SYSTEM {(alter many
system parameters such as: BREAK key; blinking cursor; drive write protect,
step rate, delay; invoke SVC processor, DATE/TIME prompts; establish disk
drivers}, and more.

The BACKUP utility performs mirror-image or by-class transfer of
disks/files. More options than you «can shake a stick at, including {only
those files not already backed up, backup by date range, backup only
visible/invisible/system files, backup only files currently existing or not
existing on the destination disk, backup between disks of different
configurations with swap disk prompts when the destination becomes full}.

CMBFILE is included to transfer SYSTEM tapes to CMD files and wvice
versa. Also concatenates two or more C(MD files. CMOFILE will perform load
module offsets, as specified by you.

CONV is a utility to transfer files from Model III TRSDOS. The REPAIR
utility is provided to turn non-LDOS single-density disks into LDOS disks
usable on Model | or Model III.

The FORMAT utility will write formatting information on 5" or 8" floppy
diskettes in either single or double density, or one or two sided (with
appropriate hardware).

The LCOMM program is an advanced communications package that allows
machine to machine communications, supporting the keyboard, display, printer,
and transfer of disk files. LCOMM is switch controlled with menu display.

LDOS is THE system. If you are looking to step up to an advanced DOS, or
are Jjust plain frustrated with your present DOS, this is the solution.
Logical Systems also has a one-year warranty program available that includes
minimum cost wupdates, four issues of the LDOS QUARTERLY, MicroNet LDOS SIG,
and more. Please specify Model I or Model III.

LC COMPILER

One of the high-level languages getting a great deal of attention lately
is the "C" language. This is due in part from the knowledge that UNIX (*), a
powerful operating system for minicomputers, mainframes, and now micros, is
written in the C-language. Why did they choose C? Because the UNIX designers
realized that application software and system code could be both created and
maintained more easily when written in the high-level C-language. Another
reason for C's growing popularity, is that it is a language rich in the use
of expression operators, functions and structured code.

If you would like to get started in C, or you are a C expert just
waiting for the perfect Model I or Model IIl release, your waiting days are
now over. "LC" (pronounced 'elsie'), a C-language compiler, is now available
for use with your LDOS. LC provides a substantial subset of the C programming
lanquage as described in, "THE _C PROGRAMMING LANGUAGE" by Kernighan and
Ritchie. LC was written to be compatible with UNIX programs. LC programs
using the standard library (supplied with the compiler) can be compiled and
run under UNIX. Programs written under UNIX which use only statements
supported by LC are also portable to LC. A large amount of existing software,
both commercial and public domain, will be directly usable by LC owners.

C is .a structured, portable language. A "“C" program is a collection of
functions arranged hierarchically. C functions can be recursive and
re-entrant, as local variables are created and stored in a stack. All
machine-dependent features needed, such as 1/0, are not implemented in the
language; rather, they are placed in the standard library. Thus, only the
implementation of the standard library changes from installation to
installation, and C programs are written in machine independent ways. The
language itself provides ways of expressing program structure, and of giving
arithmetic and logical expressions. C is known for having one of the most
powerful expression capabilities available 1in any language. C statements
supply the WHILE, DO-WHILE, FOR, IF, and SWITCH-CASE constructs. C also
provides powerful pointer capabilities to enable direct access to memory and
variable storage.

LC is an integer-only implementation of C which provides all C
statements except "“struct", "union", ‘“goto", "switch-case", and "typedef".
A1l data types except "float" and “"double" are implemented; “long" and
"short" declarations are accepted, but 16-bit fields are used for all
integers. In LC, "“char" variables are implicitly unsigned. Single-precision
and double-precision floating point operations are supported via functions
supplied in the FP/LIB library included with the LC compiler. LC accepts
multiple input files, with four levels of nesting for "#include'd" files. The
compiler generates an EDAS Version IV assembler source file which is then
assembled with the standard library and any other libraries needed to resolve
function references in order to generate the executable program. The value in
generating assembler source is twofold. First, you can obtain a complete
machine code source listing which could prove invaluable in debugging complex
code. Second, local optimization of assembler source code can be performed as
required by the experienced assembler programmer. The LC standard library
provides such functions as standard 1/0 redirection, dynamic memory
allocation, automatic standard /0 opening and closing, and program chaining.
In addition, functions specific to LDOS and the Model I/IIl are supplied in
an installation library, to provide access to such functions as graphics and
system entry points.

LC supports separate compilation; programs may be compiled in segments,
and frequently used functions «can be pre-compiled. You can create your own
library of commonly used functions with the Partitioned Data Set utility (PDS
is not included with LC but 1is available as a separate package). The
assembler source code output by LC is designed to use the extensive SEARCH
and conditional assembly support in EDAS Version IV. The assembler -and
companion assembler cross-reference utility are supplied with the LC package,
You need nothing more to start writing and running C-language programs except
your LDOS-equipped computer and a copy of "THE C PROGRAMMING L ANGUAGE". A
48K-RAM two-drive Model | or Model IIl is required.

Some highlights of the "elsie" compiler are:

Integer subset of the C language.

Access to floating point routines in ROM via function calls.

A1l statements supported except STRUCT, UNION, TYPEDEF, SWITCH-CASE, GOTO.
A1l operators supported except "->", “.", SIZEOF, and (TYPENAME).
UNIX-compatible standard 1/0 library.

Standard 1/0 redirection with complete device independence.

Input using FGETS or GETS functions support LDOS Job Control Language.
Dynamic memory management (ALLOC, FREE, SBRK).

Sequential files open for READ, WRITE, and APPEND.

Generates 7-8@ EDAS Version IV source code as output.

User libraries in Z-80 source ISAM-accessed PDS files.

Compact one-line invocation of the compiler.

LC's interactive friendly interface provides easy way to learn LC options.
Supports separate compilation of functions.

Compiled programs run under both Models I and III without modification.
Installation library gives access to graphics and LDOS entry points.
Supplied with example programs and utilities in source form.

LC/LIB includes: FPRINTF, PRINTF, ALLOC, FREE, SBRK, and String functions.
The LC package is Model I/III LDOS compatible and includes LC/CMD, LC/LIB,
FP/LIB, IN/LIB, EDAS-IV, XREF, and more than 2@@ pages of documentation.

OO0OO0OO0OO0O0O0OO0ODO0ODO0OO0OO0OO0OO0OO0OO0OO0OOoOOoO

With LC, in no time at all you will be writing C programs such as:

#include stdio/csh /* standard 1/0 definitions */
/* XFER - copy standard input to standard output */
int ¢, bytes, lines;
FILE *fp;
main()
{ while((c=getchar()) != eof)
{ putchar(c)+
++bytes;
if (c == eol) ++lines;
}
fp = fopen(“*do", "W");
fprintf(fp,"$d characters , $d lines were copied", bytes, lines);
}

This program copies standard input (*KI) to standard output (*DO) while it
counts the number of characters and lines. However, with LC's 1/0
redirection, input and/or output can be changed to any other device or file.
Type directly into a file or copy a file to a printer!

Modernize your programming skills and begin writing maintainable
applications. Get C - get LC!

* - UNIX is a trademark of Bell Laboratories

PDS

Katzan, in QPERATING SYSTEMS, A PRAGMATIC APPROACH, defines a
Partitioned Data Set (PDS) as "a data file that is divided into sequentially
organized members." Katzan further states, "Each PDS includes a directory
that points to the beginning of each member. Data sets of this type are most
frequently used to store object programs - each member corresponds to a
single object program. The PDS as a whole is referred to as a library.
Operating system libraries and user libraries are stored in this fashion."
This definition describes exactly, the two LIB files in LDOS, SYS6/SYS and
SYS7/SYS.

The PDS structure has provided a technique for combining separately
executable object programs into one file thereby saving directory slots. It
also saves time by not having to 1load an entire 1@K-15K file just to get a
few hundred bytes or a few thousand bytes of program loaded if all LIB
commands were just one big file. The system overhead of having to read and
search the member directory is minimal.

Up until now, only the system library has supported the PDS structure.
Now, with this PDS utility from MISOSYS, you can have "user" PDS structures.
The PDS command can be used to create custom libraries. A library could . be a
collection of a dozen wutility programs - all stored under one name but
directly executable by specifying the library name followed by the member
name. Consider for a moment, that you have built a library containing
CMDFILE, DSMBLR, FED, BINHEX, EDAS, and XREF. The library name MYLIB was
chosen. You can then execute EDAS by entering:

MYLIB(EDAS)

at the LDOS ready prompt. If you wanted to build a custom LDOS command
library, you could use CMDFILE to extract DIR, COPY, KILL, DEBUG, ROUTE, and
RESET from SYS6/SYS and SYS7/SYS and build them into a wuser SYSLIB. Then you
could kill off SYS6 and SYS? which would save about 15K from your ‘“custom"
SYSTEM disk. When you want to do a directory, you would only need to type:

SYSLIB(DIR) :2 (A,I)

to achieve the same result as if you had typed DIR :2 (A,I) on a regular
SYSTEM disk. Albeit you could have named your user library, "S" and save the
entering of five characters each time you wanted to execute a member of the
library. That would let you use "S(DIR)"! PDS also allows you to abbreviate
the member's name to as few characters as uniquely identify it. If "DIR" was
the only member starting with the letter "D", you could even have entered,
"S(D)..."

The PDS command is itself a Partitioned Data Set and supplies the
following functions via installed members:

0 APPEND -~ Appends a new member to the existing PDS and updates the
member directory and ISAM table records.

0 BUILD - Creates a new Partitioned Data Set. The PDS is composed of a
Front End Loader program, a MEMBER directory, and an ISAM table.

o COPY - Transfers an image of a PDS member from the PDS to a designated
file.

o DIR - Provides a directory 1listing for each member with its name,
type, date of addition, and file space occupied.

o KILL - Makes a member inaccessible for access.

o LIST - Will list a specific member in standard hex format or ASCII
format.

o0 PURGE - Removes killed member(s) from the PDS and compresses the file
to reclaim the space previously occupied by the killed member(s).

0 RESTORE - Restores a killed file to accessibility.

Here is a sample PDS directory:

PDS: U/CMD 27/07/82 Size: 45K Members: 15/ 16
convepm P 13-Mar-82 1597 dct P 13-Mar-82 3620
debugger P 13-Mar-82 2398 dircheck P 13-Mar-82 2137
dirlist P 27-Mar-82 957 doconfig P 3@-Apr-82 459
dsmblr2 P 13-Mar-82 5724 edas P 13-Mar-82 19123
fed P 13-Mar-82 7308 led P @7-Apr-82 5699
monitor P 13-Mar-82 1814 reformat P 13-Mar-82 614
strip P 13-Mar-82 767 unhash P 13-Mar-82 346
xrefl P 13-Mar-82 2127

Note that it is sorted, shows the size of each member (in bytes), and has the
date that each member was added to the PDS. This is an excellent tool to
organize your disk space and unclutter your directories! PDS 1is distributed
on a single-density 35 track data diskette. It requires LDOS Model 1 or Model
IIl Version 5.0.3 or later.

MSP-@1

The MSP-Pl package is a collection of four utility programs to further
enhance the use of your LDOS. These programs are entitled: DOAUTO, DOCONFIG,
MEMDIR, and PARMDIR. Each program functions under Model 1 or Model IIIl LDOS;
the package is distributed on a 35-track single density diskette.

How many times do you suppress the execution of an "AUTO" command by
holding down the <ENTER> key on boot-up only to later decide you want to
execute the AUTO. However, you really don't remember the specific syntax of
that complicated LBASIC command line that auto-executes. Wouldn't it nice to
be able to command the AUTO to execute without having to type BOOT or hit the
RESET button? The DOAUTO command is a short program that will execute the
"AUTO" command buffer located on ANY drive - not just the SYSTEM drive. I[t's
as easy as typing "DOAUTO :2".

DOCONFIG is a major enhancement of the configuration capabilities of
your LDOS. DOCONFIG works in one of two ways. You can SAVE the current
configuration of your system to ANY file of your choice on any drive.of your
choice. You can also restore the machine's configuration at any time from any
of the configuration files you created. The configuration file is constructed
identically to the LDOS CONFIG/SYS file, except that now YOU control
configurations without having to re-boot your machine.

DOCONFIG can even be executed from a Job Control Language file to either
SAVE or RELOAD a configuration file while the JCL is executing. This will
work even if a re-loaded configuration changes the drive assignment for the
drive currently executing the JCL file - be it the system's SYSTEM/JCL file
or your own execute-only JCL file. DOCONFIG is smart enough to correct the
JCL interfacing being done by LDOS if drive assignments are switched. [f the
JCL is SAVING a configuration, the CONFIG file will not reflect JCL as being
active. The use of DOCONFIG now gives JCL more power to run job streams that
require revised high-memory configurations for selected applications. Wow,
dynamic reconfiguration - on the fly!

Ever wonder what in the world was up in high memory when you execute a
MEMORY command and it says HIGH$=X'£123'? Where did all that memory go? No
need to wonder any more. MEMDIR is here to give you a directory of high
memory. [t tells you what program/module is there, where it resides, and how
long it is. MEMDIR makes use of the front end linkage protocol as documented
by tLogical Systems in the January 1982 LDOS QUARTERLY and requires all
high-memory modules to adhere to that standard.

The biggest part of the MSP-P1 package is PARMDIR. This is a tough one
to explain. Essentially, PARMDIR is a specific-purpose report writer that
uses the on-line disk directories as a data base of information. PARMDIR was
originally written to automatically generate Job Control Language files based
on tests of data contained in the directory. For instance:

PARMDIR /DOC:3 REN:@ (A="RENAME ", Xx="/SCR")

will produce a JCL file containing an entry for all files on drive 3 that
have an extension of "/DOC". Each JCL line of the file, REN/JCL, will appear
as: "RENAME filename/DOC:3 /SCR™. If the parameters were entered as "(A,X)",
then each JCL line would appear as: "#A# filename/SCR #X#". Thus, at JCL
compilation time, parameters may be substituted for "A" and "X".

However, PARMDIR goes light years beyond this simple example. You can
have any of the parameters A,B,C,X,Y,Z be constructed with directory data
information for each filespec selected. The information is positioned
according to key-word assignment within the parameter string. For example,

“(A="$NAM $EXT $LRL $REC™)"

will recover in each output line, the file name, extension, Tlogical record
length, and number of records. Keywords are available also for protection
level ($PRO), ending record number ($ERN), file date ($DAT), end-of-file byte
location ($EOF), drive spec ($DRV), volume name (3VNM), volume date ($VDT),
or the entire volume id ($VID).

Each of the keywords (except filename/ext) may be tested for value
comparisons in order to select the directory record for output. The
comparison is constructed as a complex "IF expression" syntax. For example:

[F="$LRL <= 18 & $REC < 3"

selects those directory records with a logical record 1length of from 1-18
only if the number of records 1is less than 3. If you make an error in the
syntax of the expression, PARMDIR will tell you exactly what character was in
error - that's friendly!

The output can be directed to any file or device and the output s
SORTED by filename/extension. Since PARMDIR can make extensive use of
parameters, you can enter parms in the command line OR from any file or
device. You can create a PARMSLIB disk file that contains NAMED parameter
procedures and refer PARMDIR to the specific procedure of parameters for a
particular execution of PARMDIR - just like JCL can use a PROCLIB with named
JCL procedures. PARMDIR even permits you to type in parameters from the
keyboard at execution time if you select PARMS="*KI[" as the parameter input
device. There is no limit to the amount of parameters that can be entered
from a parameter file or device input - only the command 1line limits its
entry to 63 characters max.

when PARMDIR generates its JCL file, all of your parameter entries are
written as comments to the output. You are even provided a parameter to
suppress these "notes". PARMDIR can automatically generate a Partitioned Data
Set (PDS) "MAP" file as easy as "PARMDIR /TXT:2 ROYS/MAP (MAP)".

PARMDIR can access the directory information of a specific drive or all
on-line drives. You can wuse PARMDIR to construct customized directory
listings. Use it to mechanize your JCL file construction. In essence, PARMDIR
is the most versatile program to come along that Jlets you tap the data
contained in directories.

PARMDIR is worth the cost of the entire package. However, you get
PARMDIR, MEMDIR, DOCONFIG, and DOAUTO in the MSP-P1 package. You won't know
how you ever got along without it.

MI SOSYS PRICE LIST
Effective August 1, 1982

CON8PZ - translate 888¢ to 2-8¢ J 1.1

CONVCPM - Transfer CP/M files to LDOSeveeenceeaaaa. $4f0

DSMBLR-II for Model I/III disk 500000000000000 . $2g
EDAS Version IV Model I/III 50000008000 000 8 $199
EDAS Version IV Model II (includes PDS lib) s$2909
FED - LDOS File Editor 5000606600000 50000008000000600 S4g
FILTER PACK=I 1t iiiennantnnteanasssaseansannenasnnnns se6g
GRASP - Graphics Support Packageveeeeeeuneens $5¢
HELP/QRC - for LDOS 5.1 (requires 1/c video) $25
I /0 MON T O R s Tt i eana s . $25

LC Compiler (IC, EDAS-IV A(VxA[LlA;BLxEs)Q 82....... $15¢

LDOS 5.1 Mod I or III {deduct $35S if ordering both} ... $129

LED - LDOS Text EQLitOr ..uieiteanenenecaneeonacoennenn .. S4¢
MEMDISK .'vvinunnnnnenannnnnns 30000008008 8a0000006080000 $4g
MSP-g1 (DOAUTO, DOCONFIG, MEMDIR, PARMDIR) $549
PDS - Partitioned Data Set utility et et e, S4g
SOLE - DDEN booting LDOS Model I 0000000003000 S35
THE BBPK, Vol I or Il - while they lastc.cv.iennn. S1g
ZGRAPH - Graphic Screen EQitOriiieicoeecaensaaans $4g

Shipping: Items marked "*", add $5. Items marked "+", add $4
All others, add $1.58 plus $¢.50 per item. COD add $1
"IF LDOS or COD then UPS else USPS"
VA residents, please add 4% Sales Tax

MISOSYS ORDER FORM

LTS IEE T S I L L AP P T T S T IS S IS IS L I AP BEE R S L IR T S I A -t B BSL AR %)
‘ompany Name: Date:

‘ndividual: P.O. #:

vddress: Apt#: Phone: + . -

tity: State: 21P:

sl =k = k= =k =k =k = ok =k =k k= =k ok kW R KRRk =R N ok =k =N =k = =k k=% =k =
>ayment: Check/MO { } MC/VISA { ! Signature cop { }
redit Card #: Bank #: Expires:

PR S At S Y e B P I I P P I T FT T L P P IT T T T Y N T L T L RS L AT Y 2
| Qty | Description |Net Each| Total |

	EDAS-IV Model I/III { .} Model II { }		
	MSP-g1 (DOAUTO, DOCONFIG, MEMDIR, PARMDIR)		
	HELP/QRC - for LDOS 5.1 (requires 1l/c video)		

Send to: MISOSYS [783+9608-2998] Sub-Total | |
P.O. Box 4848 mm————————
Alexandria, VA 223@3-0848 VA Residents Sales Tax | |

SEEODO5035555>>>> <L CLLLLLLLLLLLLLLK Shipping Charge | |
>>> $1.#0 Credit when your order is <<« =m——e—————a
>>> placed using this order form!!! <<< Total | |

DIODDOOIODDDDD55555 KLk s mm e

GRASP

The GRAphics Support Package (GRASP) s a collection of programs,
filters, and drivers that will enhance the capabilities of your Epson MX-80
Graftrax or Mx-10@ printer. GSP implements customized character sets which
include standard ASCII characters, TRS-8Q graphics blocks, and Model II1
special character symbols.

A screen-oriented character editor makes it easy for you to modify or
create any character font you desire up to a size of 16 vertical by 12
horizontal dots. If you use the double-character mode, your character font
can occupy a width of up to 24 dots. The editor displays an individual
character in a visual matrix made wup of large graphics blocks. By
manipulating the graphics cursor within the matrix, you control exactly what
"dots" will be present in your character.

Filters are provided to toggle underlining and invoke selected
double-width characters intermixed with standard width. Another filter gives
you the capability of printing the Model III special characters with a
minimum of high-memory usage.

A program is provided to easily set the custom functions of your MX-80G
or MX-10@ from the DOS Ready mode instead of having to write complex PRINT
CHR$ instructions.

GRASP works with both a Model I or a Model III TRS-8) or compatible
microcomputer running under LDOS. The GRASP package includes ALTCHAR/CMD,
ALRCHAR/DVR, ALTLINE/FLT, ALTWIDE/FLT, MOD3CHAR/FLT, GPD/DVR, SETMX8QG/CMD,
SETMX10@, and UNDRLINE/FLT - 9 programs in all.

The ALTCHAR/CMD program is a special-purpose graphics editor for you to
use in constructing and customing entire character sets for use with the
ALTCHAR/DVR printer driver.

ALTCHAR comes supplied with seven already defined character sets which
are: ST01@/12 - a 19/12 pitch character set of “standard" characters, block
graphics, and Model III special characters; TYPE1@/12 - a 10/12 pitch set of
typewriter like characters, block graphics, and Model [II special characters;
SC11@9/12 - a 1@/12 pitch set derived from STDI@ which includes greek
characters plus superscripted and subscripted numerals; and OLDENG - a 1@
pitch double-width character set of Olde English characters.

ALTCHAR/DVR implements - the printer support drivers that will wuse the
character files to generate the customized character sets on your printer.
The driver options include the following parameters: ADDLF will cause a line
feed to be sent after each carriage return; SPACE will cause the output of an
extra one-half line feed between each 1line of text; WIDTH establishes the
number of characters to print on a line; DOUBLE will cause the interpretation
of the character set as being "double-width". HIGH will allow the printing of
only characters with an ASCII value less than or equal to the value
specified. Only the necessary portion of the character data set will be read
and stored in memory, thus allowing you to cut down on the ALTCHAR driver
high memory requirements; LENGTH will set the page form length in one sixth
inch lines.

ALTLINE is a filter to implement character underlining using a toggle
character. The ALTLINE filter works in conjunction with the ALTCHAR driver to
allow the printing of a continuous underline with 1little user intervention
Upon receipt of the switch toggle character, ALTULINE will underline all
characters until either the end of the line is reached or the switch toggle
character is detected. The toggle character is not printed.

This ALTWIDE filter provides the capability of printing selected
characters in double width while all others are printed in standard width. It
could be used, for instance, to print all capital letters in double width.

MOD3CHAR/FLT is a filter that adds the capability to print the special
video characters as displayed on the Model [Il without the high memory
overhead needed by ALTCHAR. [f you only need the special characters, this
filter will do it; however, ALTCHAR is still needed for your custom character
sets.

GPD/DVR allows the use of all dot addressable graphics on the Epson
printers. GPD/DVR replaces the printer driver routines located in the TRS-8§
ROM. The TRS-89 ROM printer driver routines convert some characters and trap
others. GPD/DVR eliminates this problem. When GPD/DVR is set, ALL codes will
be passed unmodified to the printer.

The SETMX8@QG and SETMX1@@ wutilities permit conviently setting the
printer options for the Epson MX-8@G or MX-1089 printers. Command 1line options
for MX-8QG are:

RESET - reset to defaults RSmode - Radio Shack mode
Paper - paper transfer mode Emph - emphasized mode
Comp - compressed mode eXpand - expanded mode
Italic - italics mode MSB - MSB function
Double - double strike mode Space - line spacing
Form - form length in lines Lines - lines per inch
Margin - restores PR/FLT left margin

The SETMX1@Q program also supports the following:

US/FRench/GErman/ENglish/DAnish/SWedish/iTalian/SPanish
SKip - skip over perfs COLumn - column width

UNDRLINE/FLT is used to provide an easy means of underlining on any
printer that will backspace (without erasing) and print an underline
character (ASCII 95). This filter will work with the Epson MX-8@ w/Graftrax
but not with the Epson MX-10@. The character specified by the parameter,
CHAR, will be used to start and stop (toggle) underlining.

GSP is complete for your Model I/II1 LDOS machine and Epson printer.
Seven character sets are provided with GSP to get you on your way to
developing your own custom fonts. Herewith are some examples:

IGRAPH

IGRAPH is a graphics editor that allows creation of graphic images.
ZGRAPH possesses two sets of commands, primary commands and secondary command
functions. A 'help' 1list of commands at both levels is available by typing
<H> for primary commands or <F><H> for secondary functions.

The video display screen of the TRS-8@ consists of 1824 bytes of memory
arrayed as 16 rows of 64 columns. Each memory 1location is capable of
displaying one ASCII or special character or any combination of the six (2
wide by 3 high) graphic dots referred to as pixels. ZGRAPH allows any of the
160 (224 on the Model III) possible characters (ASCII, graphic and special)
to be displayed at any point on the screen.

Cursor movement depends on the mode that ZGRAPH is in. In the graphics
mode, movement is achieved using the number keys 1-4 and 6-9. If you go off
the screen to the left, you will reappear on the right. The same is true of
the top and bottom.

In the DRAW mode, the cursor will leave a trail of bright graphic pixels
everywhere it goes. In the ERASE mode, the graphic pixels will be turned off
everywhere the cursor is moved. The MOVE mode is a non-destructive means of
moving the cursor. While in the text INSERT mode, cursor movement is via the
arrow keys. The cursor is non-destructive of both graphics and text. Simply
move the cursor to the desired position and start typing text.

The entire screen can be reversed (graphic on/off) via the REVERSE
command. Text will not be reversed. The XFLIP command will create a mirror
image of the screen about the Y-axis. The graphics will be a true mirror
image and the order of text characters will be reversed. The YFLIP is similar
to the XFLIP except rotation is about the X-axis.

IGRAPH has five in-memory screen buffers in addition to the video
display screen. Four of these buffers are general purpose buffers and are
available to the user to store displays. This is useful when creating a large
graphic consisting of several ZGRAPH images or in creating those images using
the MERGE function. ZGRAPH can also load and save images to disk files. All
data moving to and from the disk passes through the primary video display.
The fifth internal display buffer is used for error recovery in case you make
a mistake (perish the thought!).

GET 1is the function for loading the video display screen from a disk
file or one of the buffers. Any one portion of the screen can be saved to a
buffer or file by using the SAVE command. MERGE allows you to superimpose one
graphic image over another. If you want to exchange the screen display with a
buffer, use the XCHANGE command.

ZGRAPH provides functions to make your graphics generation easier. The
DUPLICATE command replicates a block defined by markers to another area of
the screen. LINE will establish the best fitting line between the marker SET
and the current cursor position. The marker position will be updated to the
current cursor position after each line is drawn providing an easy way to
construct lines connected end-to-end. The RECTANGLE command creates a
rectangle with opposing diagonals being the SET marker and current cursor
position. The CIRCLE function "rounds out" the ZGRAPH graphics functions by
drawing a circle or an arc around the current cursor position.

While in the WINDOW mode, the entire screen display will move in
response to the arrow keys. Any part of the image moved off of the edges of
the screen is erased. This command is very useful to reposition an entire
image on the screen.

To allow ZGRAPH <created displays to be used in other applications, the
BINCONV post-processing program is provided. ZGRAPH's standard file format is
a pure binary representation of the screen display. Each line of the screen
memory is saved as the values of the memory bytes terminated by a carriage
return. BINCONV converts its standard file formats to:

X1> - ZGRAPH to Load Module in order to create an executable /CMD file
that will place your image on the screen;

<2> - IGRAPH to Packed BASIC - creates a file of packed graphics strings
with each line consisting of the string {ZG¥(#)="packed value of one line of
your image") starting with an index (#) of @, line number of 18@ and line
number increment of 19;

<3> - IGRAPH to BASIC Data which creates BASIC data statements of 16
decimal numbers representing the sequential values of your screen image;

<8> - IGRAPH to EDAS creates a file in assembler source format of DEFB
statements with 16 decimal values per statement representing the values of
the bytes of your image. This file may then be merged into an EDAS assembler
program.

The ZGRAPH graphics package also includes a keyboard filter, DOSAVE,
that is similar to the LDOS screen print function. However, where the screen
print directs an image of the screen to the printer, DOSAVE will direct the
screen image to a disk file specified by the user at the time you depress
<CLEAR>XSHIFT><S>. These screen files may be loaded into ZGRAPH for further
operations. Also included 1is the BINPRINT program which provides the
capability of printing a binary graphic file to a printer that supports
compatible bit graphics (MX-8p/Graftrax, MX-1860).

You get ZGRAPH, BINCONV, DOSAVE, and BINPRINT in this graphics editor.
In no time at all, you will be using images such as:

1/0 MONITOR

MONITOR 1is a disk 1/0 error monitor designed to run exclusively with
LDOS. Its purpose is to intercept a disk read or write error and offer the
operator certain options. MONITOR will display a brief message informing you
that an error occurred. For example:

-->> MONITOR ACTIVATED:

Error Code #4, Drive :2, Track: X'25', Sector: X'l4'
SYS8 Resident, Buffer at X'6AP@*', Returns to X'4789'

<A>bort - <C>ontinue - <I>gnore - <R>etry ?
advises you of a “parity error during read" of sector 2@ on track 37.

MONITOR will be especially useful when wusing programs that do not
incorporate sophisticated error trapping to manipulate files. With MONITOR
installed, disk 1/0 errors which would normally abort processing, may be
intercepted, giving YOU the ability to abort or continue. Thus, decisions on
error handling may now be made by YOU rather than the program, and may be
based on the conditions existing at runtime.

Four options will be available for handling the error:

1> ABORT: This option will abort the 1/0 operation and attempt to return to
LDOS Ready.

2> CONTINUE: will pass control back to the module that originated the [/0
operation request. This will result in the error code being passed back to
the calling program to permit it to take whatever action it can muster.

3> IGNORE: will cause MONITOR to cancel the [/0 error code and continue with
the operation back to the calling program as though no error occurred. [GNORE
could get you through a BACKUP with a troublesome drive; however, any file
written is not normally usable.

4> RETRY: will repeat the I/0 attempt that caused the error. Infinite retry
is possible as long as you have the patience to enter the <R>. Usually, if a
soft error has occurred, it takes only one or two re-attempts to
satisfactorily complete an 1/0 operation.

End your I1/0 error woes! MONITOR is great on those troublesome 8@-track
double headed drives. Even if soft errors are caused by your old drives
migrating out of alignment, MONITOR may save the day. [f soft errors continue
at an excessive rate, it is recommended that you investigate possible
hardware or diskette problems. MONITOR will work on a Model I or Model III
LDOS system.

LED

LED is a screen-oriented text editor that is designed to work with LDOS,
Model I or Model II[. It . was written for Logical Systems by Rick Wilkes, of
SuperScript fame. Although very versatile, the LED commands are easy to
learn. Those familiar with the LDOS LSCRIPT wversion of Scripsit will notice a
similarity in the command key layout. This is the LED command menu, and can
be displayed at the bottom of the video screen while using LED.

INDNT FIND CHANGE HEX UNMRK DNP UPP ALL AGN NAME EXIT
=1= == == =4= =5= == =7= =8= =0= =2 =e=
INSRT LIN DEL WRD BLK END TOP SPA TAB MENU SAVE

{TEST/TXT:0-R} (P):x'09' 35751

The display contains the name of the file currently being edited, the
current cursor column, the hex value of the character under the cursor, and
the available memory in the text buffer.

Since LED wuses the LDOS keyboard driver, type-ahead, and all keyboard
filters are available for use with LED. Also, the entire ASCII character set
is available directly from the keyboard (LED uses the extended cursor mode of
the LDOS KI/DVR).

Cursor positioning is done in the normal manner, with the four arrow
keys controlling the cursor motion. The <CLEAR><ARROW™ keys will move to the
top or bottom of the text, or to the 1left or right end of a 1line. The
<SHIFT>CLEFT> and <SHIFT><RIGHT> arrows also perform movement to the ends of
a line unless tabs are set. Then, they position either to the next tab
location or back to the previous one. There are four different cursor
characters, depending on the mode you are in (typeover, insert, insert line,
or delete). The UPP and DNP commands are used to move the display buffer up
or down a full page at a time. [f the file to be edited has a /KSM extension,
LED will automatically display the alphabetic letter before each line
assigned to that letter.

LED can be wused on many different types of files. The FIND and CHANGE
commands make it handy for doing global changes in LBASIC programs (saved in
ASCII). The AGN and ALL commands let you find or change things one at a time
or all at once.

A very useful feature is the HEX mode. This mode is available either
when overtyping or when inserting. It allows you to input characters as two
hexadecimai digits over the entire X'0@' to X'FF' range, making possible
direct editing or inputing of graphics characters.

Certain parameters may be specified when first entering LED. TABS will
cause any X'@9' tab character to be expanded. Tabs normally appear as a small
graphics block. SAVE="filespec" will save a file under a name different from
that which was used to load the file. XLATE=X'fftt' will perform a character
translation when loading and saving a file. Two other parameters, END=X'@Q'
and WP deal with word processor files that use an X'@@' to mark the end of a
file.

Another nice feature is an automatic SAVE prompt. If you request an exit
back to LDOS Ready, and have modified the text buffer, LED will automatically
ask you if you want to save the file. If no modifications have been made, an
immediate exit to LDOS is done without the prompt. This text editor 1is a
definite bargain.

FED

FED is a powerful file "zapping" utility that will work on Model [or
Model 111 LDOS systems. Its wide range of abilities make it an excellent tool
for the advanced user, but its simplicity makes it easy to use for the
novice. The editor supports upper and lower case, and all drive types and
sizes supported by LDOS. FED can be wused for displaying, printing, and
modifying existing files. FED works on a file Jlevel - not a track/sector
level. You can neither create nor extend files with FED; however, its ease of
use will make modifications to existing files such a dream that you will
wonder how you existed before using FED. Read the following descriptions of
FED commands then order your copy today!

FILE DISPLAY - FED works by displaying a single 256-byte record of the
specified file. The display will show both the ASCII and nexadecimal
equivalents of the bytes in that record. Full cursor positioning makes it
possible to position quickly to any byte in the record. FED also provides a
128-byte mode, displaying a user-selected 128-byte window of the current
record. In this mode, the decimal and hexadecimal equivalents of the byte at
the cursor are displayed. The following is a sample display:

..SYS1 .2Copyri.p@> P56 5359 5331 2@2¢ 1F32 436F 7079 7269.9.S
ght (C) 1981 by .19> 6768 742¢ 2843 2920 3139 3831 2062 7920.9.Y
Logical Systems .2@> 4C6F 6769 6361 6C2p 5379 7374 6560 7320.9.S
Incorporated...N.3@> 496E 636F 7270 6F72 6174 6564 Q192 PP4E.D.1
p..((. (5.0..0..40> E67Q FE1$ 2828 FE2p 2824 FE4P CACL 4FFE.../
P.5P.B..P.B..%B..50> 5QCA 355(FE6@ CAFA 5@FE 3@CP 1125 42D5. S
2oL F.0R1. 60> P13F PPED BP3E P312 E118 23C3 3049 31E5. Y
A.:+D.>.8..2.0!..70> 41FB 3A2B 4497 3EC3 3801 AF32 $544 21E5. S
Q.gD!¥B.?.@.8....88> 51C0 6744 2125 4206 3FCD 4@@99 38DD CDFi. :
Q.-6. ..(-.! .2q.99> 5191 2D4P CS7E FE2E 282D FE21 2pP4 3271. P
N#..D..O .. *(..LAP> 4E23 1185 44CD Cl4F 29Cl 1AFE 2A28 BCES.
LRoy...N..P(.!'.Q.B@> 8752 6F79 PB8Q1 ABAE CDB2 5@28 1221 E251.
.5P..3D:+D.o(....CP> CD35 5QE1 €333 443A 2B44 (B6F 28B6 COEL.
.2.0z....C.>.0.<.D@> AF32 @544 7AP7 D5DP D143 P73t 8839 P13C.
..WO. G.APPENDL..EP> EFAF 574F COSE 47C7 4150 50345 4£44 3180.>09
ATTRIBQ.AUTO ...F@> 4154 5452 4942 51CP 4155 544F 2929 11CP.C:

FILE POSITIONING - FED allows for record advancing, backspacing, and
direct positioning. You may page through a file quickly, either forward or
reverse. FED will also position directly to the first or last record, and FED
will also indicate the true end-of-file byte. You need not know any diskette
information such as track number, sector number, diskette density, number of
sides, or other drive data as FED automatically handles all spanning of
sectors, tracks, and extents. The only thing that is required is knowledge of
the proper filespec, and perhaps its password!

FILE MODIFICATION - FED supports complete editing of a file in both
ASCI! and Hexadecimal modes. Modifications may be done to any type of file -
data files, load module format (CMD) files, BASIC programs, LSCRIPT or other
ASCI1 file. When modifying a file, changes are made to a memory buffer
containing the desired record, which can then be saved to disk with a single
command.

FILE SEARCHING -~ FED provides for two types of character string
searches. These searches allow ASCII strings of up to 3@ characters and
hexadecimal strings up to 15 bytes 1in length. The search modes will search
the entire file, starting at the cursor location in the currently displayed
record. If the target string is found, the cursor will be positioned to the
start of the string in the appropriate record. A single key command will also
continue to the next occurrence of the search string.

LOAD MODULE FILE SEARCHING - You will be allowed to locate a Tload
address in a load module format file, or calculate the load position of a
specified byte. This feature will facilitate the inspection and editing of a
load module file. Just type 1in the Jload address in question, and FED will
position the display to that byte. Another extremely powerful feature is the
reverse of the address location command. FED will calculate where in memory a
specified byte pointed to by the cursor will load. These two features are
worth the entire price of FED.

FILE PRINTING - FED provides for sending a listing of a single record,
or the entire file, to a line printer. Forgot to turn your printer on? Ran
cut of paper? FED will not lock up if the printer becomes unavailable. With a
functioning printer, the printout will contain the filespec and drive number,
the record number, and the ASCII and hexadecimal equivalents of the 256 byte
record.

Forget a command? Just depress <ENTER> and FED will display a menu of
its commands just to jog your mind:

{;> Advance File Record <BREAK> Cancels command
<-> Back up File Record N>CENTER> New File

 Beginning Record of File <S><ENTER> Save Record

<E> Ending Record of File <X><ENTER> Exit FED

<R> Position to Record <H> Hexadecimal Modify
<Z> lip through File blocks <A> ASCII Modify

<M> Calculate Load Address <T> Toggle Display modes
<C> Find ASCII String <F> Find Hex string

<L> Locate Hex Address <G> Go next occurrence
<D> Dump File to Printer <0> Qutput top-of-form

<P> Send Buffer to Printer

If you need to do any file "zapping", then you need FED!

FILTER PACKAGE

Now from Logical Systems comes the first in a series of extension
packages for the Logical Disk Operating System (LDOS). This package is FILTER
oriented, contains many useful modules, and comes with complete SOURCE code.

CALC/FLT - A keyboard filter to perform hex/decimal/binary conversion.
Hexadecimal addition and subtraction may also be done.

LINEFEED/FLT - Either add or remove a linefeed after each carriage return.
LISTBAS/FLT = A filter which will format the output of a BASIC program. All

program lines which contain multiple statements separated by colons will have
their appearance reformatted when displayed.

LOWER/FLT - Converts every alphabetic character (A-Z) to lower case
(a-2).
MONITOR/FLT - A filter similar to STRIPCNT/FLT, with the exception that

characters less than X'2@' will be displayed as a percent sign (%) followed
by an ASCII representation of the actual character value + X'41',

PAGEPAWS/FLT - Will pause after each top-of-form character is printed and
wait until <ENTER> is depressed to continue.

REMOVE/CMD - A program to remove each occurrence of a specified byte from
a disk file.

SLASHQ/FLT - Will cause a printer that is capable of backspacing to do a
backspace and type a sltash (/) over every @ (numeric zero) that is
encountered.

STRIP7/FLT - Strips bit seven off of each character.

STRIPCNT/FLT - A filter which will replace an output character above X'7F'
or below X'28' with a pound sign (#).

TITLE/FLT - A printer filter that will print a user-defined title after
each top-of-form character (X'@C') is encountered.

TRAP /FLT - Will trap and discard away a certain character each time that
the character tries to go through the filter.

UPPER/FLT - Converts every alphabetic character (a-z) to UPPER case
(A-2).

XLATE/FLT - A complete translation filter system, for input/output.

Included are an EBCDIC translate system and a DVORAC keyboard table. You can
easily build any other translate tables that are needed for special use.

HELP

The HELP series of utility programs provides prompting notes on the LDOS
5.1.2 system commands and syntax. It is supported under LDOS on lower case
equipped Model I and Model III machines. The HELP utility contains two types
of files; HELP and SYN. The HELP files contain detailed descriptions of the
system functions including explanation of parameters and their default
values. The SYN files will be wuseful to the more experienced wuser. They
consist of the syntax necessary to invoke the function without an explanation
of terms. Both the HELP and SYN functions can be executed from LDOS Ready or
from within LBASIC using a statement of the class: CMD"HELP_(command)".

The HELP programs provide adequate explanations of the specified
commands. Each HELP file also contains a HELP function that will yield a menu
of the helps within the particular HELP file.

The HELP and SYN files are implemented using the Partitioned Data Set
(PDS) utility. Each member of the data sets is an executable machine language
program that consists of text that is loaded directly into screen memory, a
short routine to position the cursor and a transfer to the LDOS Ready prompt.
This manner of implementation allows Quick access to any help member within
the files with minimal memory requirements and rapid response time. When you
type HELP (command), only a small front end loader actually loads 1into
memory. It, in turn, clears the screen then loads the HELP explanation
directly into the screen memory.

Two files are included with the HELP utility package that will assist
you in creating your own “HELP" type files. The program, TEXTCMD/BAS,
provides an easy means of converting text files created with a text editor
into executable CMD files. PDSHELP/FIX is a patch to the PDS front-end-loader
which adds the function of clearing the screen. You will need the PDS utility
in order to create new HELP files; however, PDS is NOT needed in order to use
any of the HELP files included in this package.

The HELP utility also comes with a Quick Reference Card. The QRC is a
ten-panel foldout card that identifies all LDOS 1library commands, utilities,
drivers, filters, Disk BASIC, and Job Control Language. With HELP at your
disposal and the QRC at your side, keep you LDOS manual on the shelf and
consult it when you need in-depth information. Over 9% of your reference
needs could be rapidly satisfied with the HELP series. Do you need HELP?

SOLE

LBOS is a sophisticated operating system. The folk's at Logical Systems
have expended great efforts in producing such a powerful DOS for the TRS-8p
users. Paramount in their implementation was the concept of standardization.
LDOS makes every attempt at standardizing functions and media whenever
possible. The media format chosen for double density operation on the Model I
was an entire diskette formatted in double density. Since the TRS-8Q Model I
cannot begin to BOOT a diskette unless the BOOT sector (track @, sector @) is
formatted in single density, the standard LDOS double density diskette cannot
be B0OTed. As a result, some users have taken LSI to task for not providing a
means of booting a double density disk on the Model 1.

Operation of the RESET button causes the Z-8@ CPU to begin execution at
address @. The Model I eventually finds its way to a ROM routine which
attempts to read a disk booting routine stored on sector @ in track @ into a
buffer at X'420@'. The problem here is that this ROM routine can only read
the boot sector if it is in single density. Since LDOS has a double density
track @ when a disk 1is formatted in double density, the ROM cold start
routine doesn't like it.

The disk boot routine is supposed to read in the resident system, known
as SYSP/SYS. If SYSP has been read successfully (that means no disk error in
big letters), then the booting routine passes control to SYSP. The resident
system initialization routine does its thing, Toads in a CONFIG/SYS file if
one is available, and finally brings in SYS1 to display the "LDOS Ready"
prompt and await your command. A lot of work has been done to get to this
point. If you are 1lucky to have a working double density adaptor, then you
would have liked all of this work to take place on a double density diskette.

SOLE is an application to accomplish that goal. It will create a
double-density booting SYSTEM diskette for use with LDOS on a Model I. It
essentially constructs a single density track @ on a previously formatted
double density diskette. It then proceeds to add a second BOOT routine and
double density READ ONLY disk driver to be used to read SYSP. This SOLE B0OT
routine and driver 1is what the sector @ BOOT routine will read. Since the
track B is single density, the ROM can read sector §. The SOLE additions are
also placed on track @ so the BOOT routine in sector @, which expects to see
a single density diskette, actually winds up reading only single density
sectors. The sector @ BOOT passes control to the SOLE B800T after it
successfully loads the SOLE BOOT.

The SOLE BOOT routine interfaces with a double density driver that can
do only one thing - read sectors. It reads the SYSP which is obviously
positioned on some double density track. After SYSP is loaded and before
passing control to SYSP, the SOLE BOOT slides its booting drive code table
into the standard drive @ position. Then when SOLE passes control to the SYSP
initialization, SYSP is interfaced to the double density read-only disk
driver. The requirement here is that an LDOS double density driver needs to
be loaded. That 1is accomplished by having it in a configuration file. Thus,
when the initialization part of SYSP loads in the CONFIG/SYS file, the LDOS
double density driver is 1loaded into high memory and the drive code table
data is updated.

SOLE supports PERCOM-type double density adaptors and the Radio Shack
type adaptor. SOLE is for Model I LDOS only.

Congpz

Quite often when you need a specific tool, it is wunavailable. For the
1-8) assembly Tlanguage programmer, the need arises to maintain or modify
programs written in 8089 code using Intel mnemonics. Since 898@ code is a
subset of 2-8@ code, a wuseful approach is to translate the 8@88 code source
file to Zilog mnemonics (Z-88) source code. You could hand translate your
8080 files to Z-8@ files - a formidable task, indeed! An alternative would be
to use a translator program. This tool should prove quite useful in such a
task. CON8@Z has been designed to facilitate the conversion of assembler
source files written in 8888 Intel mnemonics to Z-8@ Zilog mnemonics. CON8®Z
is _? source translator to help you convert your 8@8Q files to Z2-8p files -
easily.

CON8@Z consists of two programs: One, CON8@Z/CMD, performs the necessary
translations of code on a line by line basis. The translation is one-to-one.
Each Togical input line is replaced by one output line. The second program,
UNNUMBER/CMD, is a preprocessor to CON8B@Z/CMD and is used to alter certain
source files to conform with the requirements for the input file structure.

Although certain code sequences written in 808@ code can be optimized
if the Z-88 extensions to 8(Q8Q code are wutilized, CON8@Z performs no such
optimizations. CON8@Z does help to transform the source into a file structure
that can be loaded by your assembler's editor. Most 8083 assembler source
files are structured as pure ASCII files with each line terminated by a
Carriage Return (CR) followed by a Line Feed (LF). Source lines are also
generally not line numbered as is the case with most TRS-8@ assemblers.
CON8@Z will expect the source file to be un-numbered. The 1line feed may or
may not be present.

Some 8(8Q assemblers support a logical 1line ending character, such as
the exclamation mark (!), to create multiple source statements on one
physical line. This is similar to the colon (:) separator in BASIC. By using
the CR="¢" parameter 1in the command line, the character "c" will be
interpreted as a logical line end when found in the operand field of the
source statement and not within single quotes.

Register nomenclature in 8@8J code is always a single character.
Eight-bit register references in 8089 assembler 1language are identical to
2-8p references {B, C, D, E, H, L}. The "(HL)" 8-bit memory reference is
denoted in 8@8Q code as the single character M. The appropriate translation
from "M" to "(HL)" will be made by CONBPZ wherever necessary.

The 8¢8@ 16-bit registers available are denoted as B, D, and H with the
0P code changed to "extended" to interpret the reference as 16-bit register
use (e.g. LD changed to LDX). In addition, the Accumulator and FLAG register
are referred to as "PSW" when used in PUSH and POP instructions (PSW is a
carryover from main frames and stands for Program Status Word). CON8BZ makes
the appropriate translations on extended instructions and will translate B,
D, H, and PSW to BC, DE, HL, and AF.

During the transiation process, CON8PZ will convert all comments in
upper case characters to Jlower case characters except for the character
immediately following the semicolon (;) comment indicator. CON8AZ will also
translate multiple blanks used as field separators to one tab (X'@9').

CON8@Z will perform translations on selected pseudo-ops where there is a

similarity of wusage on common TRS-8p assemblers. The following pseudo-0p
translations will be performed: <DB/DS/DW/SET> to <DEFB/DEFS/DEFW/DEFL>.

CON8@Z requires LDOS Model I or Model III

CONVCPM

The CONVCPM utility will allow you to transfer files from certain CP/M
diskettes onto an LDOS formatted diskette. CP/M formats supported are
standard 8" Single Density and 5" Single Density 128-byte sectoring (Omikron
version and equivalent). Two drives are required.

The CONVCPM utility will allow you to move all or groups of files from
certain C(CP/M disks onto your LDOS disks. It provides many different
parameters to choose the files to be moved. The file specifications on the
CP/M disk must conform to LDOS file specification standards. The filename and
extension must begin with an alphabetic character {A-2}. Subsequent
characters of the filename and extension must be either one of the alphabetic
characters or a numeric (A-Z,P-9}. CP/M apparently permits a filename to
begin with a numeric {§-9} or certain other non-alphabetic characters. Any
CP/M file not adhering to the LDOS standard must be renamed under CP/M prior
to a transfer operation.

The CONVCPM utility has been designed to aid in transferring data files
and other files that are not directly executable under CP/M {COM files are
directly executable under CP/M and although transferable with CONVCPM, they
are not "loadable" wunder LDOS}. Once moved to an LDOS diskette, the
transferred file is an exact image of the file as it appeared on the CP/M
diskette. The LDOS end-of-file mark is established as if the moved file ended
on a sector boundary.

CP/M uses a sector skew translation scheme during disk /0. CONVCPM has
two sector translation tables for commonly used CP/M formats. The
single-density 8" diskette structure supported 1is the Digital Research
standard. Each company implementing a version of CP/M on other than 8" single
density media chooses their own sector skew translation table. Thus, your
version of (P/M that 1is on 5" media may or may not utilize the same
translation table as that used 1in CONVCPM which is that implemented by
Omikron. CONVCPM translation tables are Single Density 8" (1, 7, 13, 19, 25,
5, 11, 17, 23, 3, 9, 15, 21, 2, 8, 14, 20, 26, 6, 12, 18, 24, 4, 19, 16, 22)
and Single Density 5" (1, 5, 9, 13, 17, 3, 7, 11, 15, 2, 6, 1@, 14, 18, 4, 8,
12, 16). A parameter provides the means for entering a different translation
table into CONVCPM.

DSMBLR

This program is a machine language disassembler that produces an
assembler source code wusing ZILGG mremonics from Z-8) machine language
resident in memory. This disassembler operates in two passes in order to
incorporate symbolic labels in the source output. The symbolic labels are
gerierated for address and 16-bit references within the start-to-end
disassembly request.

References preceding the START address are output as EQUates. A
reference is any relative instruction target address or a 16-bit target for
load, call, jump, add, or subtract instructions.

Byte or Word values that begin in the range A-F are preceded with a #
for proper assembly without error.

Output routed to the CRT is displayed in 16-line pages. The display will
include the hex address, the hex code, a sequential line number, the OP code,
operand, and displayable ASCII characters equivalent to the disassembled
instruction's hex code. A page advance is user controlied by key entry.

Output routed to the PRINTER is paged at 56 1lines per page. Each page
has column headings, supports a user-entered TITLE, and is numbered for
producing sophisticated print-outs that Jlook identical to an assembler
listing. Columns include ADDRESS, HEX CODE, LINE NUMBER, OPCODFE, OPERAND, and
ASCII equivalent of the hex code.

Output routed to the TAPE CASSETTE produces a source tape suitable for
loading into the Radio Shack Editor Assembler. The tape is generated in
blocks of 256 lines of code. A tab character is used between line number,
opcode, and operand for best Editor Assembler input.

Output routed to DISK produces a disk file suitable for 1loading into
EDAS, Disk-modified EDTASM, or Microsoft's ALDS (M-80).

Machine language programs that would overlay the disassembler can be
relocated by BASIC or a wutility and conveniently disassembled with proper
address references by using the RELOC feature.

DSMBLR functions under all popular operating systems and is supplied on
a cassette tape easily transferable to disk. Here is a sample of the output:

MISOSYS Disassembler - Disk Version 2.4 Partial ROM PAGE 09991

ADDR CONTENTS LINE# LABEL INSTRUCTION ASCII
P99p1 ORG PPPPH
2009 F3 P0002 700909 DI S
0001 AF 20003 70091 XOR A /
9002 C315390 00094 JP 73915 c.9
0005 C30049 00005 209095 JP 74009 c.e
P008 C30040 P0PR6 P 24099 c.e
9098 E1 P00Q7 19998 POP HL a
P9aC E9 20998 JP (HL) i
P0oD C312390 00999 P 723012 c.9
9019 C309349 99910 P 24003 c.e
#0813 C5 00011 79@13 PUSH BC £
9014 9601 20012 L0 B,QIH -

pg16 182€ P9913 JR 10946

MISOSYS
P.0O. Box 4848
Alexandria, VA 223@3-§848

	mis000a.tif
	mis000b.tif
	mis01.pdf
	mis02.pdf
	mis03.pdf
	mis04.pdf
	mis05.pdf
	mis06.pdf
	mis06a.pdf
	mis07.pdf
	mis07a.pdf
	mis08.pdf
	mis09.pdf
	mis10.pdf
	mis11.pdf
	mis12.pdf
	mis13.pdf
	mis14.pdf
	mis15.pdf
	mis16.pdf
	mis17.pdf
	mis18.pdf
	mis19.pdf
	mis20.pdf
	mis21.pdf
	mis21a.pdf
	mis22.pdf
	mis22a.pdf
	mis23.pdf
	mis23a.pdf
	mis24.pdf
	mis25.pdf
	mis26.pdf
	mis27.pdf
	mis998.tif
	mis999.tif

